

On Minimal Supergravities in d>4

Hourí Christina Tarazi Harvard University 5th of July, 2022

Based on work with: HCT & Cumrun Vafa

Hamada & Montero & HCT & Cumrun Vafa

SIMONS FOL

and previous work with: HCT & Cumrun Vafa (2106.10839)

Sheldon Katz, Hee-Cheol Kím, HCT, Cumrun Vafa (2004.14401)

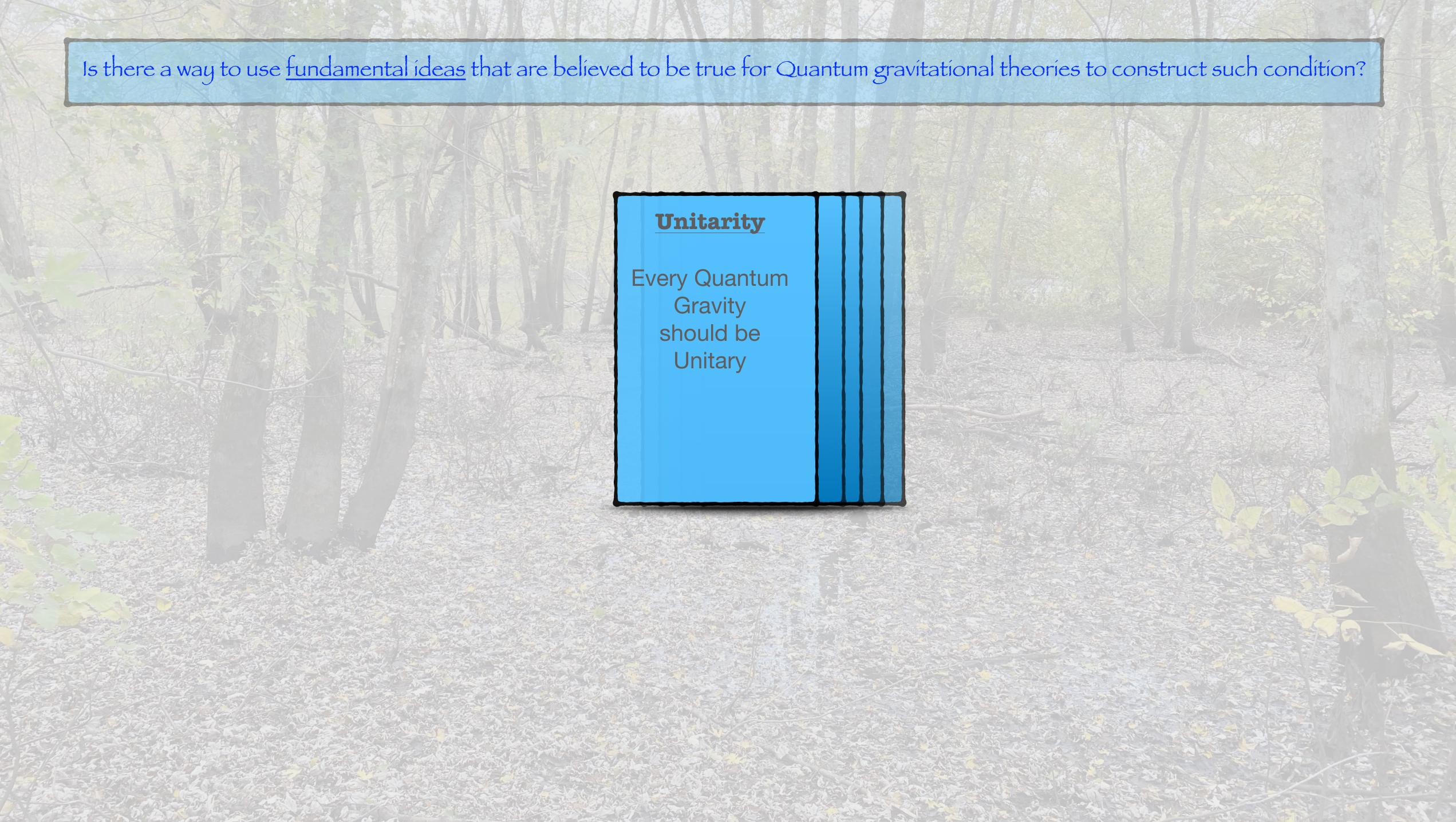
INDATION

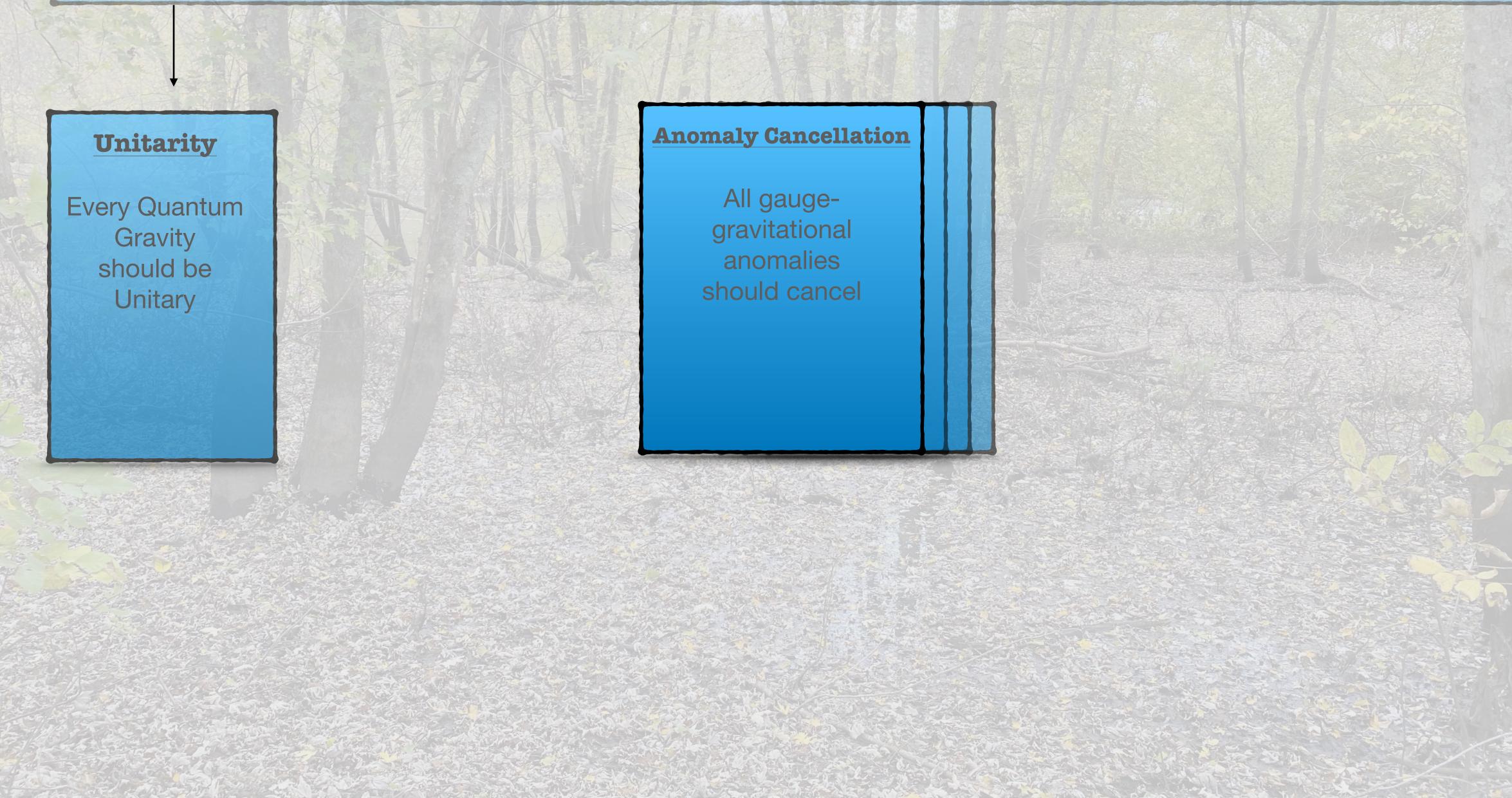
What conditions can we use to distinguish between consistent QFT's which cannot couple to gravity and those that can arise in the low energy limit of a quantum gravity?

Swampland Program

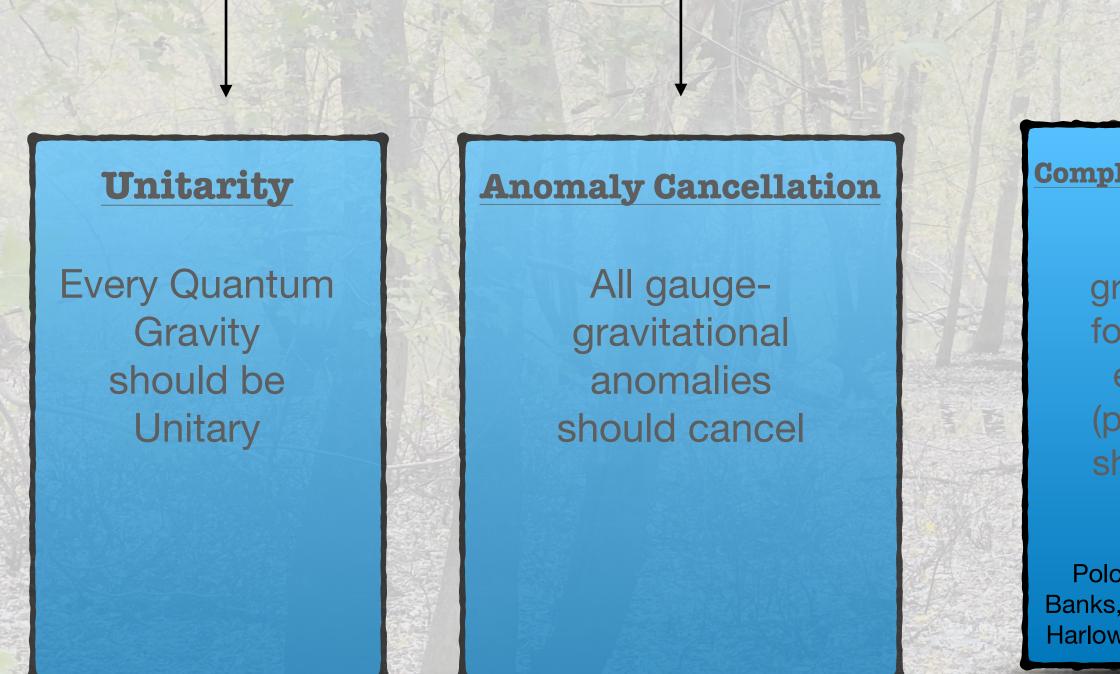
Landscape

consistent QFT Consistent with QG


Vafa 05'



consistent QFT Not Consistent with QG


Swampland:

Completeness of Spectrum

In a quantum gravity for any pform gauge field, every charged (p-1)-brane state should appear in the spectrum

Polchincki 03' Banks, Seiberg 10' Harlow, Ooguri 18'

Unitarity

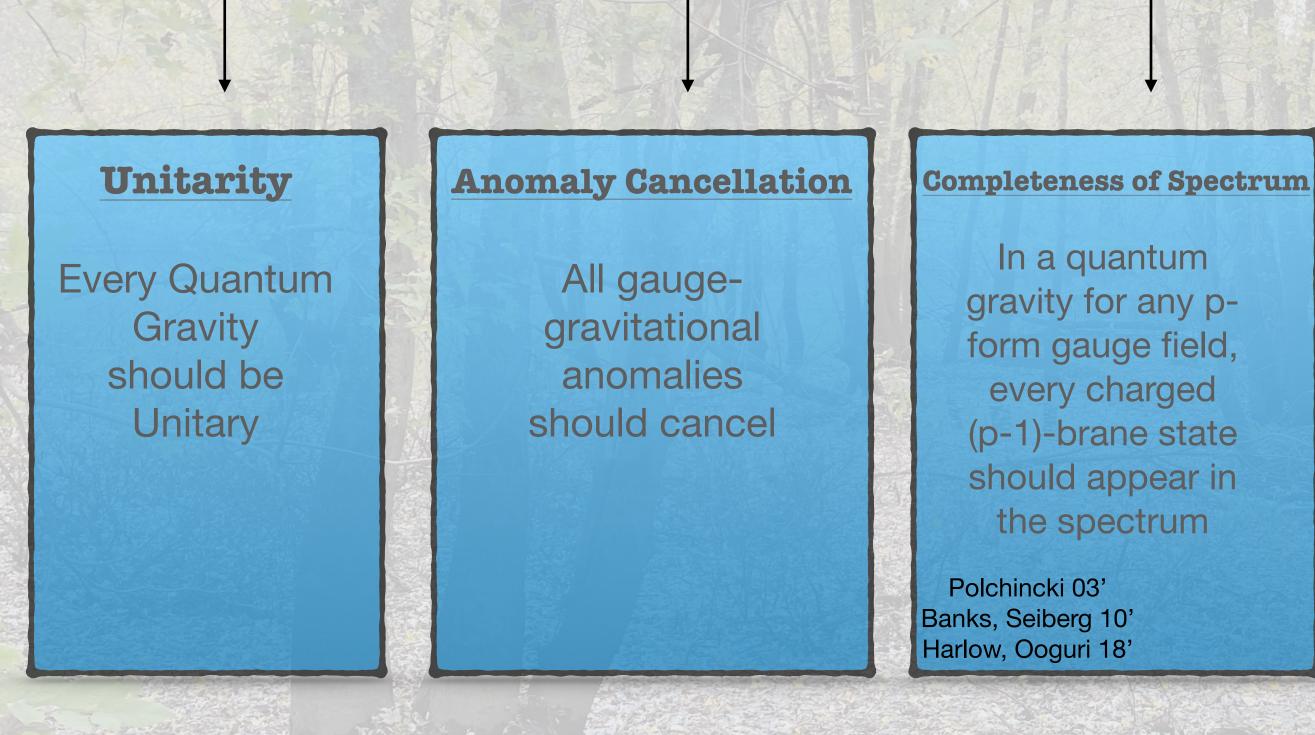
Every Quantum Gravity should be Unitary

Anomaly Cancellation

All gaugegravitational anomalies should cancel

Completeness of Spectrum

In a quantum gravity for any pform gauge field, every charged (p-1)-brane state should appear in the spectrum


Polchincki 03' Banks, Seiberg 10' Harlow, Ooguri 18'

Cobordism Conjecture:

All the cobordism classes in a consistent theory of quantum gravity must vanish

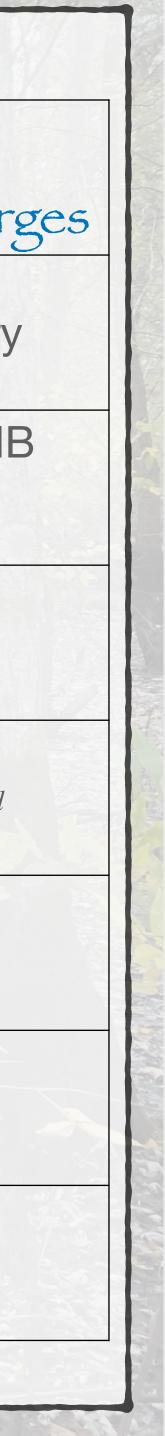
McNamara, Vafa 19'

Many more Swampland conditions exist

Cobordism Conjecture:

All the cobordism classes in a consistent theory of quantum gravity must vanish

McNamara, Vafa 19'


Distance Conjecture:

In a quantum gravity at infinite distance in the scalar moduli space an infinite tower of states becomes exponentially light

Ooguri, Vafa 06'

D	8 Supercharges	16 Supercharges	32
		io Superenaiges	32 Supercharg
11	X	×	M-theory
10	X	Anomaly cancellation $G = E_8 \times E_8, SO(32), E_8 \times U(1)^{248}, U(1)^{496}$ [Kim, Shiu, Vafa 19'] [Adams, Dewolfe, Taylor 10']	IIA & IIB
9	X	$r \equiv 1 \mod 2$ [Alvarez-Gaume and E. Witten '84] $r = 1$, M-theory on KB or IIB on DP $Sp(n)$ [Bedroya, Hamada, Montero, Vafa 21'] $r = 17$: Heterotic on S^1	
8	×	String Theory allows only for $8d : SU(N), SO(2N), Sp(N), e_6, e_7, e_8$ $S^1 r \equiv 0 \mod 2$ [Garc´ıa-Etxebarria, Hayashi ,Ohmori, Tachikawa, Yonekura 17'] [Hamada, Vafa 21']	$(S^1)^d$
7	X	$rank(G) = 1 \mod 2$ $r = 3,5,7,11,19$ Montero, Vafa 20'Can be realized.	
6	[Morrison, ,Kumar, Taylor,09'/10'/] Various Conditions [Kim, Shiu, Vafa 19'] [Lee,Weigand 19'] [HCT, Vafa 21']	6d (2,0), which is unique and realized through IIB on K36d (1,1) $rank(G) \le 20$ [Kim, HCT, Vafa 19']	
5	Various Conditions [Katz, Kim, HCT, Vafa 21']	$rank(G) \le 21$ [Kim, HCT, Vafa 19']	

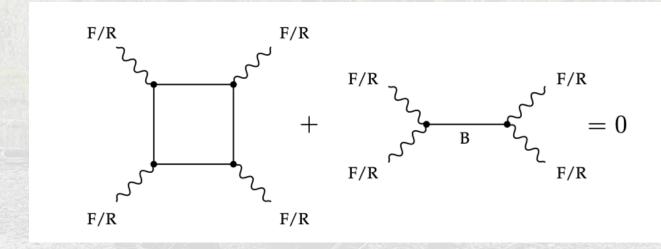
6d $\mathcal{N} = 1$ Supergravity theories

Super-multiplets:

Supergravity-multiplet	$(g_{\mu\nu}, B_{\mu\nu}, \psi_{\mu}^{-})$	C
Tensor-multiplet(T)	$(B_{\mu\nu},\phi,\chi^+)$	
Vector-multiplet(V)	(A_{μ}, λ^{-})	
Hyper-multiplet(H)	$(4h, \psi^+)$	

 $I_8 = \frac{-\Omega}{2}$ $X^{\alpha} = \frac{1}{2}\alpha$

Anomaly Cancellation:


 R^4 : H - V = 273 - 29T $F^4: \quad 0 = B^i_{Adj} - \sum n^i_R B^i_R$ $(R^2)^2: a \cdot a = 9 - T \in \mathbb{Z}$

$$F^{2}R^{2}: a \cdot b_{i} = \frac{1}{6}\lambda_{i}(A_{Adj}^{i} - \sum_{R} P_{R})$$
$$(F^{2})^{2}: b_{i} \cdot b_{i} = \frac{1}{3}\lambda_{i}^{2}(\sum_{R} n_{R}^{i}C_{R}^{i} - K_{R})$$
$$F_{i}^{2}F_{j}^{2}: b_{i} \cdot b_{j} = \sum_{R,S}\lambda_{i}\lambda_{j}n_{RS}^{ij}A_{R}^{i}A_{S}^{j}$$

[Taylor, Kumar, Morison,....] The number of theories that satisfy these anomaly conditions are infinite. SLP would though suggest that only a finite number of those can truly be UV-completed in a quantum gravity.

Chiral fields contribute to gauge/gravitational anomalies Cancelled by the Green-Schwarz-Sagnotti Mechanism

Anomaly polynomial factorizes as:

$${}^{\alpha\beta}X_4^{\alpha}X_4^{\beta}$$
$${}^{\alpha}trR^2 + \sum_i b_i^{\alpha}(\frac{2}{\lambda_i}trF_i^2)$$

 $\Omega_{\alpha\beta}$ symmetric of signature (1,T) $a^{\alpha}, b_i^{\alpha} \in \mathbb{R}^{1,T}$

 $n_R^i A_R^i) \in \mathbb{Z}$ A_R, B_R, C_R group theory coefficients $tr_R F^2 = A_R tr F^2, tr_R F^4 = B_R tr F^4 + C_R (tr F^2)^2$ $C^i_{Adj} \in \mathbb{Z}$ n_R^i = hypers in number of in R $\in \mathbb{Z}, i \neq j$

• 6d $\mathcal{N} = 1$ Supergravity theories

Completeness of Spectrum

• For 6d $\mathcal{N} = 1$ supergravity there exist (anti-)shelf dual BPS strings charged under B_2

(0,4) SCFT at low energy

Unitarity of the string worldsheet

$$\sum_{i} c_{G_i} = \frac{k_i \ dimG}{k_i + h_i^{\gamma}} \le c_L$$

Anomaly cancellation for string of charge Q

 $-I_4^{inflow} + I_4^{WS} = 0$

• Central charges: $\hat{c}_L = 3Q \cdot Q - 9Q \cdot a +$

• Levels of G_i , $SU(2)_l$: $k_i = Q \cdot b_i$, $k_l = \frac{1}{2}(Q \cdot b_l)$

Worldsheet

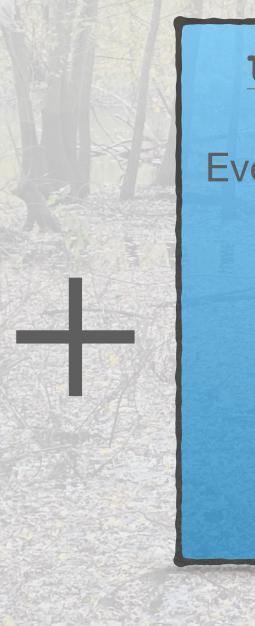
R

[Kim, Kim, Park 16'] [Shimizu, Tachikawa 16'] • The vertex operator of the massless modes with representation **R** of *G* with conformal weight $\Delta_{R} = \frac{C_2(\mathbf{R})}{2(k+h^{\nu})}$ where $C_2(\mathbf{R})$ is the second Casimir of the R must obey:

$$\Delta_{\mathbf{R}} \leq 1$$

• The representation R of a primary with highest weight $\Lambda = (\Lambda_i, \dots, \Lambda_r)$ where *r* is the rank of the Lie algebra must satisfy :

$$\sum_{i}^{r} \Lambda_{i} \leq k$$


where k is the level of the current algebra of G on the worldsheet.

-2,
$$\hat{c}_R = 3Q \cdot Q - 3Q \cdot a \ge 0$$

Supergravity Strings $Q^2 \ge (Q \cdot Q + Q \cdot a + 2) \ge 0$

Emergent String Proposal

Infinite Distance Limit-Emergence of **Tensionless String**

Is there a way to use fundamental ideas that are believed to be true for Quantum gravitational theories to construct such condition?

Unitarity

Every Quantum Gravity should be Unitary

Anomaly Cancellation

All gaugegravitational anomalies should cancel

Completeness of Spectrum

In a quantum gravity for any pform gauge field, every charged (p-1)-brane state should appear in the spectrum

Polchincki 03' Banks, Seiberg 10' Harlow, Ooguri 18'

Assumption: The string lattice Λ is generated by Supergravity strings $Q_i^2 \ge 0, Q_i \cdot Q_i \ge 0$

The moduli space of the theory is SO(1,T)/SO(T) parametrized by $j \in \mathbb{R}^{1,T}$

Consider a theory with Gauge group G associated with vector b

Claim: in the limit $\frac{1}{g_{YM}^2} \sim j \cdot b \rightarrow +\infty$ while keeping $M_{pl}^2 \sim j^2$ finite

one can express $j = t Q_0 + \sum s_i Q_i$ in a basis of supergravity strings $\{Q_i\}$ with $Q_0^2 = 0$

where there must exist an asymptotically tensionless string Q_0 with

 $Q_0 \cdot b > 0$

And

$$T_0 = j \cdot Q_0 \sim \frac{1}{t} \to 0 \quad \& T_b = j \cdot b \sim t$$

[HCT, Vafa'21]

 $\rightarrow +\infty$ as $t \rightarrow +\infty$

• $j \cdot b_i trF^2 \Longrightarrow j \cdot b_i > 0$ • $j \cdot j > 0$

- Tension: $Q \cdot j \ge 0$

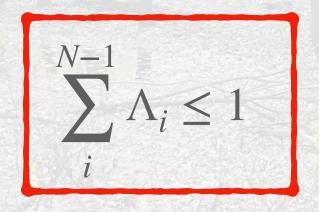
•
$$-j \cdot a \ tr R^2 \Longrightarrow j \cdot a > 0$$

[Lee,Lerche,Weigand'18]

Unitarity on the String

 $-a \cdot Q_0 = 2$

Heterotic string of [Lee,Lerche,Weigand'18]



- "Zariski Decomposition": unique way to write v=P+N

[Kumar, Morrison, Taylor 20']

Example 1: SU(N) with (N - 8) F + 1 S with $T \le 10$ and $N \le 30$ (with N = 30 for T = 1) \leftarrow No F-theory realisation for any N This theory has $-a \cdot b = -1$, $b \cdot b = -1$ therefore -a = mb + N with m > 0 which implies that $(-a - b) \cdot Q_0 \ge 0 \implies 2 \ge k = Q_0 \cdot b > 0$

But symmetric matter has highest weight $(2,0,\dots,0)$.

 $SU(24) \times SO(8)$ with 3 (A,1), T = 1**Example 2:** With $a^2 = 8$, $a \cdot b_1 = 3$, $a \cdot b_2 = -1$, $b_1^2 = 1$, $b_2^2 = -1$, $b_1 \cdot b_2 = 0$

> Unitarity: $\frac{k_1}{\dots}$ Linear algebra implies : $Q \cdot b_1 \neq 0$

Generally, any gauge group with $b^2 > 0$ is restricted by unitarity since $Q \cdot b > 0$

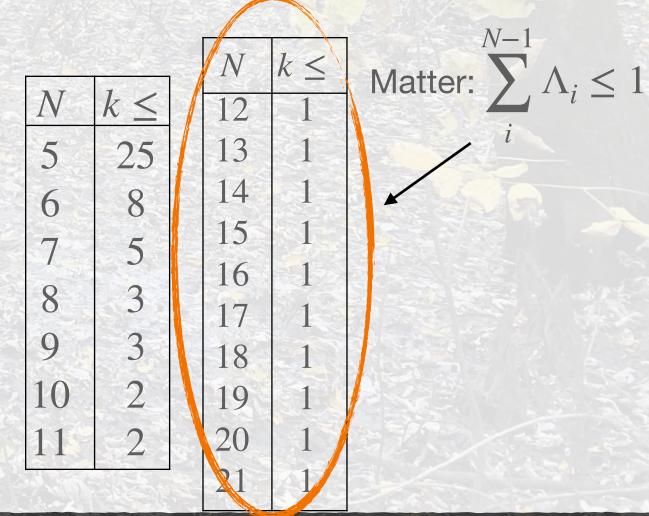
• Asymptotically tensionless string with $Q_0^2 = 0 \& Q_0 \cdot b > 0$

[Lee,Lerche,Weigand'18]

[Bauer, Caibar, Kennedy '09]

Independent of choice of vectors a, b, Q_0

with T = 1 unique solution

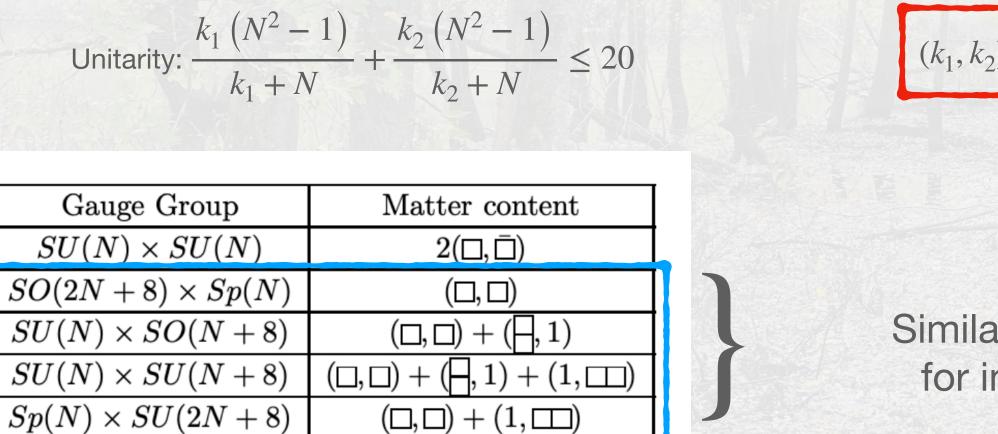

[HCT, Vafa 21']

[Angelantonj, Bonnefoy, Condeescu, Dudas 20']

No F-theory realisation for any N

$$\frac{\left(24^2 - 1\right)}{k_1 + 24} > 20$$

E.g. for general SU(N)



Example 3: $SU(N) \times SU(N), T = 9$

With
$$a^2 = 0$$
, $b_1^2 = -2$, $b_2^2 = -2$, $b_1 \cdot b_2 = 2$, $a \cdot b_{1,2} = 0$

Linear algebra shows that $-a = m(b_1 + b_2), m \in \mathbb{Q}^+$

But $-a \cdot Q = 2$, hence $2 = m(k_1 + k_2)$ and m = 1 since a characteristic vector

• There are in fact more theories allowed by anomalies with k number of simple factors and excluded with similar tools as above:

$$Sp((N-8)/2) \times SU(N) \times SU(N+8) \times \dots \times SO(N+8(k-1))$$

$$F \otimes F \quad F \otimes F$$

$$SU(N-8) \times SU(N) \times SU(N+8) \times \dots \times SO(N+8(k-2))$$

$$A \quad F \otimes F \quad F \otimes F$$

$$SU(N) \times SU(N) \times \dots \times SU(N)$$

$$F \otimes F \quad F \otimes F$$

$$F \otimes F \quad F \otimes F$$

Gauge Group	Matter content
$SU(N) \times SU(N)$	$2(\Box, \overline{\Box})$
$SO(2N+8) \times Sp(N)$	(\Box, \Box)
$SU(N) \times SO(N+8)$	$(\Box,\Box) + (\Box,1)$
$SU(N) \times SU(N+8)$	$(\Box,\Box) + (\Box,1) + (1,\Box\Box)$
$Sp(N) \times SU(2N+8)$	$(\Box,\Box) + (1,\Box\Box)$

 $(k_1, k_2) = (2,0), (1,1): N \le 11$

[Dabholkar and J. Park'96]

String realisation: $N \leq 8$ For a specific choice: $N \leq 9$

Similar analysis shows that they are all finite for independent of the choice of vectors!

2))

D	8 Supercharges	16 Sup	percharges	32 Superchar	ges
11	X	X		M-theory	
10	X	Anomaly cancellation $G = E_8 \times E_8, SO(32), E_8 \times U(1)^{248}, U(1)^{496}$		IIA & IIB	
9	X	r = 1, M-theory on KE	3 or IIB on DP		
8	X	S ¹		(.5	5 ¹) ^d
7	X	$rank(G) = 1 \mod 2$ Montero, Vafa 20'			
6	H - V = 273 - 29T	6d (2,0), unique, IIB on K3 T = 21	6d (1,1) Asymmetric Orbifold: $\Gamma^{4,4}(A_4)$ with \mathbb{Z}_5 twist		
5	??????	5d $\mathcal{N} = 2$ Asymmetric Orbifold : $\Gamma^{5,5}(D5)$ with \mathbb{Z}_{12} twist			
				A States and a second and a s	1000

Minimal Matter

Gravity multiplet:	$(g_{\mu\nu}, A_{\mu}, 2\psi_{\mu})$	No Dilaton! cannot be realized as
Vector multiplet:	$(A_{\mu}, 2\chi, \phi)$	
Hypermultiplet:	$(2\psi_{-}, 4\phi)$	

How can one find such a theory?

Similar to M-theory so could one find a 4d $\mathcal{N} = 2$ supergravity with one vector multiplet(coming from the 5d reduction) whose strong coupling limit is the pure 5d theory?

[Mizoguchi '01]

Attempt: Non-geometric compactification using some asymmetric

DID NOT WORK!

All the examples attempted had extra states in the twisted sectors

In fact it should not work!

as low-energy theories of any perturbative string compactifications

Bosonic Action

$$S = \int \star R + \frac{1}{4}F \wedge \star F + \frac{c}{6}A \wedge F \wedge F + \frac{\kappa}{96}A \wedge R \wedge R$$
$$c \in \mathbb{N} \& \kappa \in 2\mathbb{Z}$$

	Weyl group elements	Eigenvalues	Orc
tuic cubifold	$E_{6}(a_{1})$	$(\epsilon^1,\epsilon^2,\epsilon^4,\epsilon^5,\epsilon^7,\epsilon^8)$	9
tric orbifold	$A_4 \oplus A_2$	$(\epsilon^3, \epsilon^6, \epsilon^9, \epsilon^{12}, \epsilon^5, \epsilon^{10})$	15
	$D_4(a_1)\oplus A_2$	$(\epsilon^3,\epsilon^3,\epsilon^9,\epsilon^9,\epsilon^4,\epsilon^8)$	12
	$A_2 \oplus A_1 \oplus A_1 \oplus A_1 \oplus A_1$	$(\epsilon^2, \epsilon^4, \epsilon^3, \epsilon^3, \epsilon^3)$	6

The reason is rather simple!

The exact statement is: The 5d pure supergravity can not be a strong coupling limit of 4d perturbative string.

Consider the 5d action with 5d Planck mass M_5 being the only scale in the theory then the action is given by $S = M_5^3 \left[R_5 \right]$

And the tension of the string magnetically charged under the graviphoton is

 $T_5 = \frac{1}{2}$

Meanwhile, in 4d the supergravity action would be given by:

 $S = M_4^2$

Comparing now this with the action of the 5d theory on a circle S^1 of radius L leads to

 $S = M_5^3 L R_4$

 g_s

By the dimensional reduction, the monopole string must become 4d BPS string. The tensions of 4d BPS strings are

 $T_4 = M_s^2$ F-string

D-string

$$M_5^2$$

$$R_4$$

$$M_5^3 L = M_4^2$$

$$L = \frac{M_s}{g_s^2 M_5^3} = \frac{1}{g_s^2 M_s}$$
$$L = \frac{1}{\sqrt{g_s} M_s}$$

Swampland or Landscape?

- Anomalies
- **Swampland Conjectures**

- Self-Consistency
- ? ? Possibilities
- ?? **Existence of Holographic Dual**
- Connectedness to string theory ?

Boston,MA

Thank you very much!

Naxos, Greece

